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Abstract. We consider two perfectly smooth featureless surfaces atT = 0, defined only by
their respective dielectric functions, separated by a finite distance, and ask the question of whether
they can experience any friction when sheared parallel to their interface. We find large frictional
effects comparable to everyday frictional forces provided that the materials have resistivities of
the order of 1 m� and that the surfaces are in close proximity. The friction depends solely on
the reflection coefficients of the surfaces for electromagnetic waves and its detailed behaviour
with shear velocity and separation is dictated by the dispersion of the reflectivity with frequency.

1. Introduction

Friction is a problem of great practical importance, usually associated with complex systems
that are difficult to characterize. There has been much discussion of the mechanisms lying
behind friction [1, 2] but despite the many profound insights no all-embracing theory has
been formulated to date and it is not the objective of this paper to propose one. Instead our
aim is to focus on the simplest possible system, bereft of every complexity, and ask how
friction arises. For simplicity we restrict ourselves toT = 0.

Figure 1. Perfectly smooth dielectric surfaces shear against one another with relative velocity
v. Is there a frictional force?

We consider two perfectly smooth featureless surfaces, parallel but not in contact,
defined only by their electromagnetic reflection coefficients. We now shear the surfaces with
relative velocityv and calculate the friction; see figure 1. Note the absence any roughness, a
quality normally associated with friction. How is one surface ‘aware’ of the other’s motion?
We can detect relative motion of a dielectric surface: reflect an electromagnetic wave from
the surface and the reflection coefficient will show an asymmetry along the direction of
motion; see figure 2.
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Figure 2. We can detect the motion of a smooth dielectric surface by measuring its reflection
coefficient with and against the motion as shown in the figure. In the reference frame of the
dielectric the two incident waves are Doppler shifted in opposite senses and therefore reflect
differently from the surface.

The two incident waves experience opposite Doppler shifts in the reference frame of
the dielectric and, assuming dispersion with frequency, the two waves experience different
reflection coefficients. If the surfaces are hot they will naturally emit radiation, but even a
cold surface will be surrounded by a radiation field due to zero-point quantum fluctuations.
This exchange of virtual photons is the frictional mechanism that we study in this paper.
We shall show, contrary to a natural suspicion that such an effect should be extremely small,
that the effect is large: comparable to other contributions to friction.

Our point of view is that friction is the exchange of momentum between two surfaces
and therefore we must be able to describe this process as an exchange of particles since
all forces are ultimately mediated by a particle. In the case of friction with wear, atoms
are exchanged between the surfaces either singly or in larger fragments. This is the classic
frictional mechanism to which we can all relate: the grating of two rough surfaces in
intimate contact. But it is only one mechanism, and it is understood that friction can occur
even when there is negligible wear. Other means of momentum exchange are possible.

Another particle that can be exchanged is the electron. This need not imply charging
of the surfaces provided that equal numbers flow in opposite directions. Obviously metals,
where the electrons are freely moving, are the prime candidates. Since electron density
decreases exponentially outside a surface this mechanism will be short ranged, limited to a
scale dictated by the work function. We shall give brief consideration to this mechanism
and show that it creates forces comparable to our electromagnetic mechanism.

Finally there is the photon. This may mediate the electrostatic forces operating between
charge distributions on opposite surfaces, or it may play a more subtle role involving the
zero-point fluctuations. Forces involving photons will be long ranged because there is no
work function preventing the photon’s escape from a surface. It is with the photon that we
shall concern ourselves here. We do not seek a universal explanation of friction. Our aim
is far more modest: only to demonstrate the simplest possible model that exhibits friction
by exchange of photons.

Frictional forces on moving charges outside dielectrics have been studied for many years
in the context of electron microscopy and nuclear radiation [3–9] and are well understood.
The system with which we are concerned is different: the two surfaces that we shear
against one another are assumed to be locally electrically neutral. Quantum mechanically
the dielectrics will experience internal charge fluctuations, and images of these charges
in the other dielectric will create forces. We are already familiar with the force normal
to the interface: the Van der Waals force, but there is in addition a parallel component
because the image will lag slightly behind the charge creating it. We find that both forces
can be calculated rather simply in terms of the reflection coefficients of the two surfaces.
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Furthermore their magnitude is not small provided that the surfaces are in close contact as
in a normal friction experiment, and provided that the surfaces have a resistivity of the order
of 1 m�. This latter condition relates to the density of electromagnetic states available for
dissipating energy. Immediately outside a surface this is proportional to

=R(ω) (1)

whereR(ω) is the reflection coefficient of the surface. For a purely resistive sample this
reduces to

= iσ/ωε0

2+ iσ/ωε0
(2)

whereσ is the conductivity. The effect is that of a washboard in which excitations on
opposite surfaces with the same wave vector,k, grate against one another with frequency

ω = kv. (3)

Given that the longest wave vectors generally correspond to wavelengths no less than an
atomic spacing or so, typical velocities of 1 m s−1 will result in frequencies in the low GHz
range. Adjusting the conductivity,σ , to maximize equation (2),

σ ≈ 1 m−1 �−1. (4)

To exchange momentum between the surfaces we need to create an excitation on each of
the surfaces with equal and opposite momentum, not necessarily with equal energy though
the total energy must sum to

E = h̄ω = h̄kv. (5)

Thus energy radiates from the interface in correlated pairs of excitations.
The possibility of radiating energy from dielectrics in motion is not a new one. Perhaps

the most celebrated antecedent is the accelerated-mirror concept: a mirror accelerated in the
vacuum can be expected to produce electromagnetic radiation through its interaction with
vacuum fluctuations [10]. More recently it has been suggested that sonoluminescence can
be due to the acceleration of a dielectric fluid [11, 12], though there is still some controversy
about whether there is enough acceleration to give the observed effect [13]. All of these
phenomena are characterized by the extremely small amounts of radiation predicted and the
difficulty of detecting it. Acceleration is a motion that cannot be removed by change of
reference frame. A shear motion is another and we shall show that energy is also radiated
in this situation. The big difference from the accelerated dielectric is that relatively large
amounts of energy can be radiated under conditions of shear.

The possibility of a dissipative component to Van der Waals forces has been considered
in earlier work. In some instances the authors have been interested in questions other
than frictional forces [14], and in other instances the formulae obtained differ from ours in
crucial respects: for example the paper by Teodorovitch [15]. Schaich and Harris [14] argue
that Teodorovitch is in error and that is our conclusion too. Levitov [16] presents some
calculations of similar quantities, but without giving details, and his conclusions differ in
some important aspects from those presented here: in particular his estimate of the forces is
very small compared to ours. The work closest to ours is that by Annett and Echenique [17,
18] on the friction experienced by a neutral atom above a surface. Barton has considered
the case of partially silvered mirrors sheared against one another, where relativistic effects
are vital [19]. Polevoi [20] has also discussed viscosity of the vacuum and his work has
some features in common with our ‘poor man’s derivation’ of section 2. Mkrtchian [21] has
also discussed the problem but like Levitov gives few details. Liebsch [22] also considered
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frictional forces on neutral atoms at surfaces. Høye and Brevik [23, 24] consider the
interaction between moving oscillators and treat the case of retardation.

In this paper we give for the first time a simple and general derivation of the frictional
forces between dielectrics. We draw attention for the first time to the important fact that if
this frictional mechanism is to produce large effects, the relevant electromagnetic density
of states must be maximized. This means choosing a resistivity of the order of 1 m�

as discussed above. We have eschewed complex diagrammatic formulations of this simple
problem. They obscure the clarity of the situation and are prone to user error when the
system is time dependent. Instead we give two derivations. The first given in section 2
is an intuitive one that produces the main results quickly and in some generality. We re-
derive the same result in sections 3 and 4 by considering a simple model of a dielectric
which dissipates energy through a set of harmonic oscillators, solving that model using
a Lagrangian formulation to construct a quantum mechanical equation of motion for the
harmonic oscillators. The latter method sheds light on the quantum mechanical processes
at work, and highlights the two-photon nature of the frictional process.

By way of comparison we analyse in section 5 the frictional forces generated by
exchange of electrons and show that these forces are of similar magnitude to photon-based
forces. Finally we discuss the possibility that light may be emitted as part of the frictional
process and show that this possibility does not occur within our simple model, unless the
dielectrics are sheared at unreasonably large velocities.

2. ‘Poor man’s derivation’ of quantum friction

The final result for quantum friction is a simple one, and leads us to suspect that we could
find a simple way of deriving it. It turns out that this is indeed that case, and in the process
provides an interesting link with the conventional Van der Waals force between two surfaces.

In the presence of a surface, the polarization of radiation is described as being either of
p type where the electric field vector lies in the same plane as the wave vector and surface
normal, or s type where the electric field vector lies perpendicular to the plane containing
the wave vector and surface normal. In the limit of very large momentum parallel to the
surface, which will be important for our calculations, the normal component of the wave
vector becomes imaginary describing an exponentially decaying wave. At the same time the
p wave becomes almost entirely electrostatic in character, and the s wave almost entirely
magnetic. Thus if the surface has magnetic permeability of unity, only the p wave is relevant
under these conditions. A more detailed discussion of this limit can be found in the paper
by Pendry and Martı́n-Moreno [8].

Imagine that we have a wave incident on a surface,

E0K̂
+
p exp(ikxx + ikyy + iKzz) (6)

where the polarization is chosen to be p type and we work in the electrostatic limit neglecting
the velocity of light,

K̂±p =
c0

ω

[
kx ky Kz = ±i

√
k2
x + k2

y

]
. (7)

In this limit the contribution of the s-polarized state is negligible. Reflection from the
surface results in a total wavefield of

E(r) = E0K̂
+
p exp(ikxx + ikyy + iKzz)

+ E0R1pp(ω + kxv)K̂−p exp(ikxx + ikyy − iKzz). (8)
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Since we know the total wavefield we can calculate the force from the Maxwell stress tensor
in vacuo,

Tij = 1

2

{+ε0EiE
∗
j + ε0E

∗
i Ej − ε0δijE ·E∗ + µ0HiH

∗
j + µ0H

∗
i Hj − µ0H ·H∗

}
. (9)

TheH-field being parallel to the surface makes no contribution to the force acting across
the plane of the surface, but the electric fields give

Fx = 2 |E0|2 ε0c
2
0

ω2
kx

√
k2
x + k2

y =R1pp(ω + kxv)

Fz = 2 |E0|2 ε0c
2
0

ω2
(k2
x + k2

y)<R1pp(ω + kxv).
(10)

Note how thex-component of the force vanishes unless there is some dissipation in the
system.

Next we ask what might be the source of the incident wavefield? If a second surface
is brought close to the first surface there will be a wavefield outside this second surface
whose amplitude is given atT = 0 in the following way. Let us normalize each mode in
the system to have one unit of energy. Since the system is assumed translationally invariant
parallel to the surface, each mode is characterized by a wave vectork parallel to the surface.
Let us suppose that normalized modes with frequencies betweenω andω + dω have an
electric field density immediately outside the surface of

1

ε0

dN(k, ω)

dω
dω (11)

then, in a system in which the modes each contain the zero-point energy, the electric field
density with frequencies betweenω andω + dω will be

|E0|2 = h̄|ω|
2ε0

dN(k, ω)

dω
dω (12)

where the prefactor of ¯h|ω|/2ε0 normalizes the wavefield to a total energy of ¯h|ω|/2 per
mode. Wijnandset al [25] show how to use Green’s function theory to express the density
of states at a distanced from the second surface in terms of the reflection coefficient of the
surface,

dN(k, ω)

dω
= exp(−2kd)

2πc2
0k

ω=R2pp(ω) (13)

where we have assumed that the second surface is stationary in our frame of reference.
Hence on substituting

|E0|2 = h̄|ω|
2ε0

exp(−2kd)

2πc2
0k

ω=R2pp(ω) dω (14)

gathering together terms and integrating the forces over all frequencies and momenta parallel
to the surface,

Fx = 4
∑
kx ,ky

∫ +∞
−∞

h̄|ω|
2ε0

exp(−2kd)

2πc2
0

ε0c
2
0

ω
kx =R1pp(ω + kxv)=R2pp(ω) dω

Fz = 2
∑
kx ,ky

∫ +∞
−∞

h̄|ω|
2ε0

exp(−2kd)

2πc2
0

ε0c
2
0

ω
k = [R1pp(ω + kxv)R2pp(ω)

]
dω.

(15)

We have also added a factor of two because of a symmetrical process in which zero-point
waves emitted from surface one exert a force on surface two. Note the similarity between
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these two forces. The first, representing the frictional force between the two surfaces,
vanishes whenv = 0 because of a symmetrical summation over an antisymmetrical function
of kx . The second represents the conventional Van der Waals force as, for example, derived
in [26] and remains finite whenv = 0.

Had we wished to study the effect of temperature we could have modified (12) to include
the thermal contribution to radiation emitted from a free surface.

We can simplify the expression for the frictional force as follows. First we transform
the summation overk to an integral,

Fx = h̄

π

L2

(2π)2

∫ +∞
−∞

kx dkx

∫ +∞
−∞

exp(−2kd) dky

×
∫ +∞
−∞
=R1pp(ω + kxv)=R2pp(ω) sgn(ω) dω

= h̄

π

L2

(2π)2

∫ +∞
0

kx dkx

∫ +∞
−∞

exp(−2kd) dky

×
∫ +∞
−∞

[=R1pp(ω + kxv)− =R1pp(ω − kxv)
]=R2pp(ω) sgn(ω) dω (16)

where we have exploited the symmetry of the reflection coefficient which follows from
general principles of causality,

=R(−ω) = −=R(+ω). (17)

Next we make a similar rearrangement of the frequency integration to give

Fx = h̄

π

L2

(2π)2

∫ +∞
0

kx dkx

∫ +∞
−∞

exp(−2kd) dky

× 2
∫ +∞

0

[=R1pp(ω + kxv)− =R1pp(ω − kxv)
]=R2pp(ω) dω. (18)

One final manipulation gives

Fx = h̄

π

L2

(2π)2

∫ +∞
0

kx dkx

∫ +∞
−∞

exp(−2kd) dky

× 2

[
+
∫ +∞

0
=R1pp(ω + kxv)=R2pp(ω) dω

−
∫ +∞

0
=R1pp(ω − kxv)=R2pp(ω) dω

]
= h̄

π

L2

(2π)2

∫ +∞
0

kx dkx

∫ +∞
−∞

exp(−2kd) dky

× 2

[
+
∫ +∞
kxv

=R1pp(ω)=R2pp(ω − kxv) dω

−
∫ +∞

0
=R1pp(ω − kxv)=R2pp(ω) dω

]
. (19)

Obviously we could have made the same manipulations with the role of the two surfaces
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inverted,

Fx = h̄

π

L2

(2π)2

∫ +∞
0

kx dkx

∫ +∞
−∞

exp(−2kd) dky

× 2
∫ +∞

0

[=R1pp(ω + kxv)− =R1pp(ω − kxv)
]=R2pp(ω) dω

Fx = h̄

π

L2

(2π)2

∫ +∞
0

kx dkx

∫ +∞
−∞

exp(−2kd) dky

× 2

[
+
∫ +∞
kxv

=R2pp(ω)=R1pp(ω − kxv) dω

−
∫ +∞

0
=R2pp(ω − kxv)=R1pp(ω) dω

]
.

(20)

Adding the two expressions gives

Fx = 4h̄
L2

(2π)3

∫ +∞
0

kx dkx

∫ +∞
−∞

exp(−2kd) dky

∫ kxv

0
=R2pp(ω)=R1pp(kxv − ω) dω.

(21)

We take the standard expression for the reflection coefficients of a dielectric surface, for
example from Nordling and̈Osterman [27],

Rss = +cos(θi)−√ε cos(θr)

cos(θi)+√ε cos(θr)

Rpp = −cos(θr)−√ε cos(θi)

cos(θr)+√ε cos(θi)

(22)

where the angles are now complex,

cos(θi) = Kz(vac)

|K(vac)| =
i
√
k2
x + k2

y − ω2c−2
0

ωc−1
0

≈
i
√
k2
x + k2

y

ωc−1
0

cos(θr) = Kz(ε)

|K(ε)| =
i
√
k2
x + k2

y − ω2εc−2
0

ω
√
εc−1

0

≈
i
√
k2
x + k2

y

ω
√
εc−1

0

.

(23)

Hence,

lim
k2
x+k2

y→∞
Rss = 0

lim
k2
x+k2

y→∞
Rpp = ε − 1

ε + 1

(24)

and

Fx = 4h̄
L2

(2π)3

∫ +∞
0

kx dkx

∫ +∞
−∞

exp(−2kd) dky

×
∫ kxv

0
=ε1(ω)− 1

ε1(ω)+ 1
=ε2(kxv − ω)− 1

ε2(kxv − ω)+ 1
dω (25)

which is the same as our more hard-won expression of section 4. Note, however, that the
formulation in terms of reflection coefficients is more general as it makes no assumption
whatever about the internal structure of the surfaces. This may be important when
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considering systems in which the surface is intrinsically different from the bulk, surfaces
with thin coatings being a pertinent example.

Within this simple formulation it is easy to correct for higher-order perturbations. We
saw above how quantum fluctuations in a second surface result in a fluctuating wavefield
incident on the first surface, with amplitudeE0. However, we can identify further
contributions to the incident amplitude from waves that are reflected from the first surface,
and then from the second surface to return again. The process can be repeated to give a
corrected incident amplitude,

E′0 = E0

[
1+ e−2kdR2pp(ω)R1pp(ω + kxv)+

{
e−2kdR2pp(ω)R1pp(ω + kxv)

}2+ · · ·
]

= E0
[
1− e−2kdR2pp(ω)R1pp(ω + kxv)

]−1
. (26)

Hence correcting equation (15) for multiple scattering,

Fx = 4
∑
kx ,ky

∫ +∞
−∞

h̄|ω|
2ε0

exp(−2kd)

2πc2
0

ε0c
2
0

ω
kx =R1pp(ω + kxv)=R2pp(ω)

× ∣∣1− e−2kdR2pp(ω)R1pp(ω + kxv)
∣∣−2

dω

Fz = 2
∑
kx ,ky

∫ +∞
−∞

h̄|ω|
2ε0

exp(−2kd)

2πc2
0

ε0c
2
0

ω
k = [R1pp(ω + kxv)R2pp(ω)

]
× ∣∣1− e−2kdR2pp(ω)R1pp(ω + kxv)

∣∣−2
dω. (27)

In the examples that we shall consider the surfaces are mainly resistive, and multiple-
scattering corrections make only a quantitative change to our predictions even when the
surfaces are close together. However, when the surfaces support local modes, the frequencies
of these modes can be drastically shifted by proximity of a second surface strongly affecting
their contribution to friction.

3. A classical Hamiltonian description of moving surfaces

We have restricted ourselves to a system defined purely in terms of a classical macroscopic
quantity: the dielectric constant,ε(ω). Therefore it is appropriate that we begin by
constructing the classical equations of motion of the system, before following the well
worn path of quantization via the Hamiltonian. We begin by constructing a Lagrangian,
then define momentum coordinates which are used to find the Hamiltonian.

Figure 3. A sheet of charge sits a distanced above a dielectric surface.

First consider a classical system comprising a surface of a dielectric material in vacuo.
We assume that the dielectric is a dynamic object defined by a continuum of harmonic
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oscillator modes. These modes are vital to our subsequent calculations because they will be
responsible for transporting energy away from the surface in the frictional process. Although
we shall define the modes through the losses that they produce, that will also fix the real part
of the dielectric function through causality as realized in the Kramers–Kronig relationships.
Since we assume that the surface is translationally invariant, each mode is defined partly
by a wave vector parallel to the surface,k, and partly by a second subscript,j , which
may be associated with degrees of freedom normal to the surface, and is responsible for
transportation of energy away from the surface. We need say nothing about the nature of
the modes other than how they couple to the outside world and this we probe with a sheet
of charge placed a distanced above the surface (see figure 3). We can now write down the
Lagrangian,

L1 = T − V =
∑
jk

ṡ2
jk − ω2

jks
2
jk − Akβjksjk exp(−kd − i�t). (28)

The first two terms on the right-hand side define the harmonic oscillators. Although they
are written for simplicity as a discrete summation over modes, we shall always take the
continuum limit. The last term on the right-hand side represents the coupling of each mode
to the external charge. Note that it drops off exponentially with distance from the surface:
at this stage we are mainly concerned with very-short-wavelength modes whose fields in
the vacuum are largely electrostatic and therefore

k2
x + k2

y + k2
z = 0

kz = i
√
k2
x + k2

y.
(29)

The point of introducing the external charge is to probe the electrical activity of the modes
in the vacuum. Since for any frictional process we are interested in the mutual excitation of
modes across the intervening vacuum, all relevant coupling must pass through the vacuum
and is therefore probed by our test charge. We can calculate the coupling parameter,βjk, by
calculatingP , the rate of dissipation of energy in the dielectric, in two ways then equating
the results.

First we use the Lagrangian equations of motion to calculate the dissipation from the
rate of change of the external charge,

i� 2kε0Ak exp(−kd − i�t) (30)

multiplied by the voltage at the surface due to thej th mode defined to be

− 1

2kε0
βjks

∗
jk exp(−kd). (31)

Using the Lagrangian formalism to calculate the amplitude of thej th mode induced by the
external charge,

sjk = 1

2

βjkAk exp(−i�t)

�2− ω2
jk

(32)

enables us to find

Pk = �A2
k

2
=
∑
j

β2
jk

�2− ω2
jk

. (33)

At first sight it may appear that the rate of power dissipation is always zero because the
excitation frequency,�, will almost always differ from the mode frequencies,ωjk, and
hence the summation is real with no imaginary component. However, if we take the limit
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of the poles very closely spaced together, and assume that the source of the excitation is
switched on with a slowly increasing exponential, then we retrieve a finite answer on closing
the contour in the lower half-plane:

Pk = �A2
k

2
=
∫ +∞
−∞

β2
jk

(�+ iδ)2− ω2
jk

dNjk
dωjk

dωjk = πA2
k

2
β2
jk

dNjk
dωjk

. (34)

The physical interpretation of this result is that discrete modes are confined to the surface
region and cannot transport energy away from the surface, but continuum modes reach into
the bulk where they can dump energy.

Alternatively we may recognize that the test charge induces an image charge in the
dielectric,

q ′ = +
[
ε(�)− 1

ε(�)+ 1

]
2kε0Ak exp(ikxx + ikyy − i�t) (35)

and therefore the loss can be found from the rate of working of the test charge,

P ′k = 2A2
kk�ε0=

[
ε(�)− 1

ε(�)+ 1

]
. (36)

EquatingP andP ′ gives

β2
jk

dNjk
dωjk

= 4k�ε0

π
=
[
ε(�)− 1

ε(�)+ 1

]
(37)

where
dNk
dωk

(38)

is the density of modes of wave vectork.
Thus we know how the modes in a surface interact with a sheet of charge outside

the surface. This enables us to calculate how the modes in two parallel surfaces interact
across the gap separating them. From (31) we know the voltage and hence the electric field
produced in the gap by a given mode. By bringing the surfaces towards one another from
infinity and integrating the force resulting from the overlapping fields, the interaction can
be found,

βjkβj ′k

2kε0
exp(−kd)sjk1sj ′k2. (39)

Hence we can write down the Lagrangian for two parallel surfaces separated by a
distanced, for the moment assumed stationary with respect to one another:

L12 =
∑
jk

ṡ2
jk1− ω2

jks
2
jk1+

∑
j ′k′

ṡ2
j ′k′2− ω2

j ′k′s
2
j ′k′2−

∑
jj ′

βjkβj ′k

2kε0
exp(−kd)sjk1sj ′k2. (40)

We assume that the two surfaces are identical. Note that the test charge has been removed
and that a new term represents coupling between modes on opposite surfaces. Since the
coupling is mediated by an electrostatic field in the vacuum, our previous calculation of the
coupling parameter is valid here also.

Finally the two surfaces are set in motion relative to one another as shown in figure 1. We
shall assume that the relative velocity is small compared to the velocity of light. Choosing
a frame of reference in which the surfaces have equal and opposite velocities,1

2v:

L12(t) =
∑
jk

ṡ2
jk1− ω2

jks
2
jk1+

∑
j ′k′

ṡ2
j ′k′2− ω2

j ′k′s
2
j ′k′2

−
∑
jj ′

βjkβj ′k

2kε0
exp(−kd)sjk1sj ′k2 exp(−ikxvt). (41)
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Only the coupling term changes: modes on opposite surfaces grate against one another in a
washboard effect generating a frequency ofkxv. It is this finite frequency that will induce
transitions in the system causing dissipation of energy. It is worth noting that the relevant
frequencies range from zero up to a cut-off which is imposed either by the exponential
decay of the coupling,

ωmax 1= v/d (42)

or, if d is very small, by the shortest-wavelength fluctuations in the dielectric, usually of
the order of 10−10 m. Thus the relevant frequencies are of the order of 10+10 Hz for a shear
velocity of 1 m s−1.

The final step in the classical treatment is to extract an Hamiltonian from the Lagrangian.
First we define canonical momenta,

u = ∂L

∂ṡ
= 2ṡ (43)

which gives

H12(t) =
∑
jk

ujk1ṡjk1+
∑
j ′k′

uj ′k′2ṡj ′k′2− L12(t)

=
∑
jk

1

4
u2
jk1+ ω2

jks
2
jk1+

∑
j ′k′

1

4
u2
j ′k′2+ ω2

j ′k′s
2
j ′k′2

+
∑
jj ′

βjkβj ′k

2kε0
exp(−kd)sjk1sj ′k2 exp(−ikxvt). (44)

4. A quantum description of moving surfaces

Now we introduce quantum mechanics into our classical picture using the conventional
identification of

u→−i h̄
∂

∂s
(45)

giving for the time-dependent Schrödinger equation

i
∂

∂t
9(t) = H12(t)9(t)

= +
∑
jk

{
−1

4

∂2

∂2sjk1
+ ω2

jks
2
jk1

}
9(t)+

∑
j ′k′

{
−1

4

∂2

∂2sj ′k′2
+ ω2

j ′k′s
2
j ′k′2

}
9(t)

+
∑
jj ′

βjkβj ′k

2kε0
exp(−kd)sjk1sj ′k2 exp(−ikxvt)9(t). (46)

Some general observations are in order. The final term in the Schrödinger equation is
capable of creating excitations in the system of energy ¯hkv as can be made apparent by
defining annihilation and creation operators,

a±jk1 =
1√
2

[
−i

∂

∂sjk1
± isjk1

]
a±jk2 =

1√
2

[
−i

∂

∂sjk2
± isjk2

]
(47)

hence

sjk1sj ′k2 = −1

2

[
a+jk1− a−jk1

] [
a+j ′k2− a−j ′k2

]
(48)
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so the interaction term becomes

+
∑
jj ′

βjkβj ′k

2kε0
exp(−kd)sjk1sj ′k2 exp(−ikxvt)9(t)

= − 1

2

∑
jj ′

βjkβj ′k

2kε0
exp(−kd)

[
a+jk1− a−jk1

] [
a+j ′k2− a−j ′k2

]
× exp(−ikxvt)9(t). (49)

A system originally in the ground state can only absorb energy that is shared between the
two surfaces because an excitation is created on each surface. Frictional energy will be
emitted from the interface in correlated pairs of excitations.

If we suppose that the system is in the ground state,

9 = 90 =
∏
jk

∣∣∣∣2ωjkπh̄

∣∣∣∣1/4 exp(−ωjkh̄−1s2
jk1)

∏
j ′k′

∣∣∣∣2ωj ′k′πh̄

∣∣∣∣1/4 exp(−ωj ′k′h̄−1s2
j ′k′2) (50)

then we can find the frictional forces by calculating the rate of excitation of the system.
We do this in the first instance to second-order perturbation theory to calculate the rate of
excitation into the first excited state (one excitation per surface!):

9JKJ ′K ′ =
∣∣∣∣32ω3

JK

πh̄3

∣∣∣∣1/4 sJK1 exp(−ωJKh̄−1s2
JK1)

∏
jk 6=JK

∣∣∣∣2ωjkπh̄

∣∣∣∣1/4 exp(−ωjkh̄−1s2
jk1)

×
∣∣∣∣32ω3

J ′K ′

πh̄3

∣∣∣∣1/4 sJ ′K ′2 exp(−ωJ ′K ′h̄−1s2
J ′K ′2)

×
∏

j ′k′ 6=J ′K ′

∣∣∣∣2ωj ′k′πh̄

∣∣∣∣1/4 exp(−ωj ′k′h̄−1s2
j ′k′2). (51)

The shift in the ground state energy can be written as

1E =
∑
kxky

1

4k2ε2
0

exp(−2kd)
∑
JJ ′

β2
JKβ

2
J ′K

∣∣∣∣ 1

16ωJKωJ ′K

∣∣∣∣ 2 |ωJK + ωJ ′K |
|ωJK + ωJ ′K |2− k2

xv
2
. (52)

The imaginary part of1E gives the rate of excitation out of the ground state; therefore we
can calculate the rate of working:

Fxv = dU

dT
=
∑
kxky

1

2π2
exp(−2kd)

×
∫ +∞
−∞

dω sgn(ω)=
[
ε(ω)− 1

ε(ω)+ 1

] ∫ +∞
−∞

dω′ sgn(ω′)=
[
ε(ω′)− 1

ε(ω′)+ 1

]
× = 2h̄

∣∣ω + ω′∣∣2
|ω + ω′|2− k2

xv
2+ iη

(53)

where we have substituted forβ2
JK the expression that we calculated earlier. Performing

theω′-integration:

Fx = h̄

π

∑
kxky

∫ +∞
−∞

exp(−2kd)kx =
[
ε(kxv − ω)− 1

ε(kxv − ω)+ 1

]
=
[
ε(ω)− 1

ε(ω)+ 1

]
dω. (54)

We recognize in equation (54) the expression for the frictional force derived in equation
(15) of section 2.
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5. The nature of quantum friction

First some general observations about our formula for friction. We note that there must be
loss processes operating in both surfaces. Note also the similarity of our formula for friction
to the expression derived earlier for the Van der Waals force. However, the significant
difference in the frictional force is that the imaginary part of the response is used.

We can make some statements about the interrelationship of distance and velocity
dependence of friction. Note that on making the substitution

k′ = kv (55)

our formula (21) can be rewritten:

Fx = 4h̄
L2

(2π)3
1

d3

d3

v3

∫ +∞
0

k′x dk′x

∫ +∞
−∞

exp(−2k′dv−1) dk′y

×
∫ k′x

0
=R2pp(ω)=R1pp(k

′
x − ω) dω (56)

and hence

Fx = 1

d3
g

(
v

d

)
(57)

whereg is an arbitrary function. If we assume that the particular form of the dielectric
function results in a power-law dependence on the velocity it follows that

F ∝ vµ

dµ+3
. (58)

Therefore thev-dependence andd-dependence are interlinked. This may be a way of
identifying these contributions to friction.

Now let us explore what happens with various standard forms of the dielectric function.

5.1. Constantε(ω)

This is the simplest case, but possibly the least physical, and results in a frictional force of
the form

F =
[
=ε − 1

ε + 1

]2 3h̄v

26π2d4
. (59)

Note that our ‘rule of powers’ is obeyed and that friction has the form that would be expected
if the vacuum behaved as a viscous fluid. The force falls rapidly asd4. Nevertheless there
is no exponential decay of the force because interactions between the two surfaces are
conveyed by a massless particle, the photon. Note also the central role played by

=ε − 1

ε + 1
(60)

which represents the reflection coefficient of the surface for p-polarized radiation, and is
also proportional to the density of electromagnetic states immediately outside a surface.



10314 J B Pendry

Figure 4. The frictional force between two conducting surfaces separated by distanced. At
low velocities the force increases asv3, and at high velocities it decreases asv−1 ln v, reaching
a maximum atv ≈ dσε−1

0 .

5.2. Constant conductivity

In this case the dielectric function has the form

ε = 1+ i
σ

ωε0
(61)

whereσ is the conductivity. For this case the integrals are tricky to evaluate except in the
limiting cases of high and low velocities. However, we sketch the qualitative form of the
force in figure 4, and quote the limiting cases:

F = 5h̄ε2
0v

3

28π2σ 2

1

d6
v � dσ

ε0

F = h̄σ 2

32d2π2vε2
0

ln

(
vε0

2dσ

)
v � dσ

ε0
.

(62)

Since this is a more realistic instance, it is worth evaluating the force. We pause a moment
to maximize the effect which we achieve approximately by maximizing

=ε − 1

ε + 1
= = iσ/ωε0

2+ iσ/ωε0
= 2σ/ωε0

4+ (σ/ωε0)2
(63)

i.e. we choose

σ = 2ωε0 ≈ 2kvε0 ≈ 2d−1vε0 (64)

where we have recognized that the critical frequencies will be the highest for which loss
occurs. Assuming a modest shear velocity and surfaces in atomic contact gives

d = 10−10 m

v = 1.0 m s−1
(65)

where we have recognized that the dielectric response of the surface will cut off at something
like a screening length, typically 10−10 m in a metal. Under these conditions we choose

σ = 0.1 �−1 m−1 (66)

which puts us more or less at the crossover point of the two limiting formulae, and at
the maximum of the friction/velocity curve in figure 4. This sort of conductivity is not
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untypical of semi-metals such as carbon. We make a rough estimate of the frictional force
by substituting into the high-velocity formula (the least sensitive to the velocity) and find

F ≈ 3× 103 N m−2. (67)

However, this result needs to be qualified: no two surfaces placed in contact will actually
touch over their entire area. Estimates of the fractional area in contact vary around 0.001.
Therefore if we assume that our surfaces have only this fractional intimate contact the
observed force will be much smaller,

Fobs≈ 3 N m−2. (68)

In other words for a restricted class of materials, the semi-metals, in which the
electromagnetic density of states outside the surface is maximized in the relevant frequency
range, this contribution to frictional forces is substantial. Furthermore, because of the power-
law dependence on the separation of surfaces, it will dominate the long-range contributions
as the other contribution, due to exchange of electrons, must always have an exponential
decay in consequence of the finite work function of the electron.

5.3. Frictional forces independent of velocity

The dielectric functions discussed above all lead to frictional forcesdependenton the
velocity, but experiment mainly measures forcesindependentof velocity. It is interesting to
speculate on whether our model of photon exchange can reproduce velocity independence
and under what circumstances.

Figure 5. The reflection coefficient shown on the left implies that the surface can sustain many
low-frequency excitations which absorb momentum without absorbing much energy. At finite
frequencies the coefficient is nearly constant. On the right is shown the corresponding frequency
integrand in equation (20): if the peaks are strong enough the integral will be independent ofv.

Inspecting equation (21) for the force we can see that the velocity dependence would
be eliminated if the reflection coefficients had the form shown in figure 5. Under these
circumstances the frequency integrand in (21) is sketched in figure 5. If we assume that the
peaks dominate the integration, then the result will be independent of velocity. Of course
this assumes a finite velocity such that the peaks are well separated.

We might further speculate on the nature of a surface with a capacity to absorb low-
frequency radiation with large components of momentum parallel to the surface. Surface
scientists are fond of invoking a ‘dirty’ surface and such an object exactly meets our
requirements in this case. A surface on which there is a random assortment of loose
massive fragments will absorb a great deal of momentum for little energy input. The
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Figure 6. A model of a ‘dirty’ surface: low-frequency excitations of massive particles on
the surface absorb plenty of momentum but little energy leading to a low-frequency peak in
absorption of incident radiation.

Figure 7. The frictional force as a function of velocity as predicted by our model of a ‘dirty’
surface.

fragments need only be massive relative to the fundamental particles, and nanometre-sized
lumps would be perfectly adequate. Figure 6 shows our model of a dirty surface, and we
suggest that the electromagnetic reflection coefficient would show the low-frequency peak
sketched in figure 5. The width of the low-frequency peak could then be predicted in terms
of the mass,M, of the fragments:

1 ≈ h̄k
2
max

M
. (69)

Interestingly enough, at low velocities the model predicts that the frictional force will rise
rapidly when the peaks overlap. This will happen when

kxv ≈ 1 (70)

where1 is the width of the low-frequency peak. The effect is shown in figure 7. The
critical velocity at which sliding friction changes into static friction is predicted by the
width, 1, of the low-frequency peak in reflectivity:

kmaxvc ≈ 1 (71)

wherekmax is the largest wave vector that can be excited in the system, which we expect
to be of the order of 10+11 m−1.



Shearing the vacuum—quantum friction 10317

6. Other contributions to friction

Our perspective is that friction arises through exchange of momentum-carrying particles
between surfaces. We have considered the photon, but other exchanges are possible: atoms
may be exchanged as happens in the case of friction with wear [28, 29], but the most
obvious competitor to the photon is the electron. Note that thephonon, as opposed to the
photon, is not a particle that can have any existence separate from the solid; it does not
exist in vacuum and therefore is not on the list of exchangeable particles, though phonon
exchange can be mediated by a another particle.

The interaction of two surfaces through exchange of electrons is a vast subject and covers
nearly the whole of chemical bonding at surfaces. Therefore, since we are only interested in
a simple comparison with the photon case, we choose the most elementary possible model
capable of generating friction within the context of two smooth translationally invariant
surfaces. We shall assume the surfaces to be made of the same material, and the electrons
to be defined by a spherical Fermi surface.

Figure 8. When two surfaces move relative to one another, the Fermi surfaces shift slightly in
the direction of movement, creating a thin annulus of states into which electrons can tunnel from
the other surface. This creates a momentum exchange and hence a force between the surfaces.

When the two surfaces are at rest relative to one another, there is no exchange of
electrons because the exclusion principle forbids tunnelling into filled states. When the
surfaces are in relative motion a small slit of states appears on either side of the Fermi
surfaces, where tunnelling is allowed; see figure 8. We can work out the rate at which the
surfaces exchange momentum through this tunnelling mechanism:

Fx = 2
∫ π

0
h̄k4

F v
L2

(2π)3
cos2(θ) sin2(θ) exp

−2d

√
2mφ

h̄2 + k2
F cos2 θ

 dθ (72)

where d is the separation between the two surfaces,φ is the work function relative to
vacuum,kF is the Fermi momentum,m is the electronic mass,v is the shear velocity, and
θ is the angle between the electron momentum andv.

In the limit in which the surfaces are in contact,

Fx = 2
∫ π

0
h̄k4

F v
L2

(2π)3
cos2(θ) sin2(θ) dθ = 1

2

∫ π

0
h̄k4

F v
L2

(2π)3
sin2(2θ) dθ
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= π

4
h̄k4

F v
L2

(2π)3
= L2

32π2
h̄k4

F v (73)

Substituting a Fermi momentum typical of aluminium and a typical shear velocity,

kF = 1 au≈ 10+10 m−1

v = 1 m s−1
(74)

the force is

L−2Fx = 1

32π2
h̄k4

F v =
10−34× 10+40× 1

32π2
= 3.16× 10+3 N m−2. (75)

Note that this electronic contribution to friction is comparable in magnitude to that obtained
from the tunnelling of photons: compare equation (67).

The main difference between photonic and electronic friction is the dependence on
separation,d, between the surfaces. In the photonic case there is nearly always a power
law whereas in the electronic case the existence of a finite work function dictates that the
force decays exponentially withd. Photons always dominate at large distances.

7. Can sheared interfaces emit light?

The friction that we have discussed so far involves frequencies typically in the GHz range,
much lower than optical frequencies. The frequency is limited byk, the wave vector parallel
to the surface of the radiation, and the relative velocity of the surfaces,

ω 6 kv (76)

as we have already discussed. Since the screening length in a material is of the order of
the separation between electrons, the highest frequencies possible at shear velocities of the
order of 1 m s−1 are no more than a few GHz. Therefore there is no emission of visible
light by this mechanism unless the shear velocity is impossibly large.

GHz microwaves can be produced, but to be observed must be ejected into a transparent
dielectric and have a real wave vector:

K ′z =
√
εω2c−2

0 − k2
x − k2

y + iδ (77)

where the prime denotes that we are in the dielectric. ForK ′z to be real,

εω2c−2
0 ≈ εk2v2c−2

0 > k2
x + k2

y (78)

which requires

ε >

(
c0

v

)2

. (79)

Our conclusion is that, unless we assume improbably large velocities or huge values ofε,
no free radiation can be emitted from smooth sheared surfaces. The situation is different if
we allow the surfaces to be rough, but that is beyond the scope of this paper.

8. Conclusions

We have shown that friction exists between sheared smooth dielectric surfaces atT = 0,
provided that we take quantum fluctuations into account. If the surfaces are almost in
physical contact, the frictional forces may be comparable to other contributions observed
in everyday situations, provided that the surfaces have a high density of electromagnetic
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states in the GHz region: in other words resistivity of the order of 1 m�. Details of how
friction depends on surface separation and velocity vary with the materials, but in general
friction decays with a power-law dependence on surface separation, in a manner linked to
the velocity dependence and can be expected to be the dominant frictional force at large
separations, just as the Van der Waals force dominates in this regime.

Although finite temperatures are beyond the scope of this paper, we can expect some
modifications to our conclusions at room temperature because the excitations created by
friction are of the order ofkBTroom.

The formula for quantum friction (21) is very simple and given a few assumptions can
be derived in a few lines of algebra alongside the well known formula for the attractive
force between surfaces. A more careful quantum treatment associates quantum friction with
emission of pairs of correlated photons, one into each surface, but gives the same formula
as the rough approach.

Brief consideration was given to friction arising from exchange of electrons: a different
mechanism from the electron–hole pair creation considered previously (the latter is in reality
a photon-exchange process). Tunnelling of electrons between surfaces can also give a
substantial frictional force, but exponential decay of the electron wave functions means that
these forces are shorter ranged that photon-based forces.

Finally we asked whether free light could be emitted from a sheared interface. It can
but under extreme conditions of shear velocity, or of material properties that render it
practically impossible. This conclusion is reached within the context of smooth surfaces.
If the surfaces are rough on an atomic scale, the momentum conservation arguments lying
behind our conclusions are no longer valid. Rough surfaces may emit light on being sheared.
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